

Experimental characterization of an industrial burner operated with simulated EGR

Florence, 30/05/2023

S. Galeotti^{1*}, A. Picchi¹, R. Becchi¹, R. Meloni², G. Babazzi², C. Romano², A. Andreini¹

¹ Department of Industrial Engineering, University of Florence, Italy

² Baker Hughes, Via F. Matteucci 2, 50127, Florence, Italy

*sofia.galeotti@unifi.it

Introduction: EGR in gas turbine combustors

- Exhaust Gas Recirculation (EGR) in gas turbine involves plant complications and high costs
 - Decrease in inlet oxygen is challenging in terms of combustion stability
 - CO and UHC emission increase
- EGR becomes convenient when gas turbines power plants are coupled with CO₂ capture and sequestration processes

Introduction: EGR in gas turbine combustors

- Exhaust Gas Recirculation (EGR) in gas turbine involves plant complications and high costs
 - Decrease in inlet oxygen is challenging in terms of combustion stability
 - CO and UHC emission increase
- EGR becomes convenient when gas turbines power plants are coupled with CO₂ capture and sequestration processes

Steam turbine

fuTure hydRogen Assisted gas turbiNeS for effective carbon capTure IntegratiON

Main objective: Pave the way for the carbon-neutral energy generation from natural gas-fired power plants using GT

- \rightarrow Efficient coupling of gas turbine generators with CO₂ capture and sequestration (CCS) processes:
 - →EGR to increase CO₂ content in exhaust in order to maximize CCS efficiency
 - → Need to extend EGR operations capabilities of GT units

Aim of the work:

Experimental characterization of baseline DLN burner in simulated EGR conditions

Experimental campaign at ambient pressure with industrial burner fuelled with natural gas

- Emission measurements: NO_x and CO
- OH* chemiluminescence
- Thermoacoustic instabilities

EGR is simulated with CO₂ addition in the combustion airflow

Experimental data will be used to validate CFD models to optimize the burner geometry and expand the EGR operability range

Test rig and burner

Optical reactive test rig:

- Single cup configuration (1:1 scale)
- Quartz tubular liner
- Effusion cooled dome
- Double optical access to the flame
- Emission probe
- Spark ignition

Test rig and burner

Optical reactive test rig:

- Single cup configuration (1:1 scale)
- Quartz tubular liner
- Effusion cooled dome
- Double optical access to the flame
- Emission probe
- Spark ignition

DLN baseline burner

- Double counter-rotating swirlers
- 2 fuel lines
 - Pilot line (PLT)
 - Premix line (PMX)

Operating conditions: reactive tests

- Atmospheric pressure
- Fuel: natural gas (from domestic line)
 - Fuel composition analysed at BH after each test
- Inlet temperature T_{inlet}=300°C
- Burner pressure drop $\Delta P/P=4.2\%$

Investigated parameters:

- Different fuel splits (PLT%)
- Two different sets of operating conditions
 - Combustion with standard air $(x_{02}=21\%)$
 - Combustion with CO₂ vitiated air (simulated EGR)
 - EGR condition is defined by inlet oxygen mole fraction x_{02} and adiabatic flame temperature

Results: OH* chemiluminescence

Test are performed at Tflame=constant

Time-averaged images acquired with HS Phantom camera and HAMAMATSU image intensifier

Emission measurements: effect of CO₂ addition and fuel split

NO_x

- NO_x emission with standard air decrease with lower pilot fuel fraction
- CO₂ addition strongly decrease NO_x emissions
- Further increase in CO₂ dilution has limited effect
- CO₂ addition lowers the effect of fuel split

Correction with CO2 vitiated air to take into account oxygen depletion

$$NO_{x \ 15} = NO_{x \ dry} \cdot \frac{0.2095 - 0.15}{2 - 0.2095} \frac{2 - x_{02 \ inlet}}{x_{02 \ inlet} - x_{02 \ dry}}$$

Emission measurements: effect of CO₂ addition and fuel split

NO_x

- NO_x emission with standard air decrease with lower pilot fuel fraction
- CO₂ addition strongly decrease NO_x emissions
- Further increase in CO₂ dilution has limited effect
- CO₂ addition lowers the effect of fuel split

CO

- CO emission strongly increase with CO₂ addition
- Lower dependency on fuel split, CO₂ addition does not change trend

Correction with CO2 vitiated air to take into account oxygen depletion

$$CO_{15} = CO_{dry} \cdot \frac{0.2095 - 0.15}{2 - 0.2095} \frac{2 - x_{02 inlet}}{x_{02 inlet} - x_{02 dry}}$$

- Pressure oscillations arise with CO₂ addition
- Amplitude increases with CO₂ fraction in the oxidizer, reaches a maximum, and eventually decreases

- Pressure oscillations arise with CO₂ addition
- Amplitude increases with CO₂ fraction in the oxidizer, reaches a maximum, and eventually decreases
- Same behavior observed with all fuel splits
- Amplitude increases with lower pilot fuel fraction

Tflame=constant

- Pressure oscillations arise with CO₂ addition
- Amplitude increases with CO₂ fraction in the oxidizer, reaches a maximum, and eventually decreases
- Same behavior observed with all fuel splits
- Amplitude increases with lower pilot fuel fraction
- Frequency lowers with higher CO₂ fraction in the oxidizer

- Pressure oscillations arise with CO₂ addition
- Amplitude increases with CO₂ fraction in the oxidizer, reaches a maximum, and eventually decreases
- Same behavior observed with all fuel splits
- Amplitude increases with lower pilot fuel fraction
- Frequency lowers with higher CO₂ fraction in the oxidizer
- OH* chemiluminescence shows intense longitudinal fluctuations of the flame

PLT/PLT_{ref}=0.4 X₀₂=19.7% Acquired at 1000 Hz

Conclusions

Experimental characterization of an industrial burner operated with simulated EGR

- Flame topology studied with OH* chemiluminescence:
 - OH* intensity strongly diminishes with CO₂ addition and reaction becomes widespread
- Emission measurements
 - CO levels significantly increase with CO₂ dilution
 - Nox emissions descrease with CO₂ dilution and lower fuel pilot fraction
- Outbreak of thermoacoustic instabilities with CO₂ vitiated air limits the burner EGR operating window
- Experimental data will support the validation of CFD models to optimize the burner geometry for EGR operation

Acknoledgments

This project has received funding from the European Union's Horizon Europe research and Innovation program under Grant Agreement No 101069665

Experimental characterization of an industrial burner operated with simulated EGR

Thank you for the attention!

S. Galeotti^{1*}, A. Picchi¹, R. Becchi¹, R. Meloni², G. Babazzi², C. Romano², A. Andreini¹

¹ Department of Industrial Engineering, University of Florence, Italy

² Baker Hughes, Via F. Matteucci 2, 50127, Florence, Italy

*sofia.galeotti@unifi.it

- Pressure oscillations arise with CO₂ addition
- Amplitude increases with CO₂ fraction in the oxidizer, reaches a maximum, and eventually decreases
- Same behavior observed with all fuel splits
- Amplitude increases with lower pilot fuel fraction
- Frequency lowers with higher CO₂ fraction in the oxidizer
- OH* chemiluminescence shows intense longitudinal fluctuations of the flame

Tflame=constant

PLT/PLT_{ref}=0.4